Simplification of Exponents and Power


 
 
Concept Explanation
 

Simplification of Exponents and Power

To simplify the exponents, we have some laws. These laws together can be used to covert exponent in the simplest form.

1. a^{m}times a^{n}=a^{m+n}

2.  frac{a^{m}}{a^{n}}=a^{m-n}

3. frac{1}{a^{m}}=a^{-m}

4. frac{a^{m}}{a^{n}}=left ( frac{a}{b} right )^{m}

5. left ( a^{m} right )^{n}=a^{mn}=left ( a^{n} right )^{m}

.... (More Text Available, Login?)
Sample Questions
(More Questions for each concept available in Login)
Question : 1

If left ( frac{9^ntimes3^2times3^n-(27)^n}{(3^3)^5times2^3} right ) = frac{1}{27}, find the value of n

Right Option : A
View Explanation
Explanation
Question : 2

Simplify and write each of the following in exponential form:   frac{(25)^3}{5^3}

Right Option : B
View Explanation
Explanation
Question : 3

If a= 2 and b = 3, the find the values of the following:left(frac{a}{b}+frac{b}{a}right)^a

Right Option : A
View Explanation
Explanation
 
 
 
Related Videos
Language - English
Language - English



Students / Parents Reviews [20]